РЕКЛАМА
ИНФОРМАЦИЯ
ПОЛЕЗНЫЕ ССЫЛКИ
AMD Radeon HD 7970: тест видеокарты на новой архитектуре

AMD Radeon HD 7950: обзор, тест и сравнение с GeForce GTX 580

nVidia GeForce GTX 560: обзор пяти разогнанных видеокарт

AMD Radeon HD 7770 и HD 7750: недорогие видеокарты на архитектуре Graphics Core Next

AMD Radeon HD 7870 и Radeon HD 7850: обзор и тест видеокарт на базе GPU Pitcairn

Обзор GeForce GTX 680: Kepler против Tahiti

GeForce GTX 680: SLI, разрешение 5760x1080 и разгон

nVidia GeForce GTX 690 4 Гбайт: обзор видеокарты с двумя GPU GK104

Видеокарты серии Radeon HD 7000: исследуем качество графики

Radeon HD 7970 3 Гбайт: обзор и тест пяти разогнанных видеокарт

Nvidia GeForce GT 640: обзор видеокарты на базе GPU GK107 Kepler

Обзор видеокарты AMD Radeon HD 7970 GHz Edition

GeForce GTX 670: тест семи видеокарт

Обзор и тест GeForce GTX 660 Ti

Обзор и тест Nvidia GeForce GTX 650 и GTX 660: Kepler за $110 и $230

Тест и обзор Sapphire Toxic HD 7970 GHz Edition: играем с 6 Гбайт памяти GDDR5 и 6 мониторами

Тест видеокарт GeForce GTX 660 Ti: изучаем пропускную способность видеопамяти

GeForce GTX 650 Ti: обзор и тест трех видеокарт

Тест Radeon HD 7990 и GeForce GTX 690: время тяжелой артиллерии

NVIDIA GeForce GTX Titan 6 Гбайт: GK110 в игровой видеокарте

Тесты GeForce GTX Titan 6 Гбайт

PowerColor HD7870 PCS+ Myst Edition: тест видеокарты на GPU Tahiti LE

Тест AMD Radeon HD 7790: GCN за $150

Битва видеокарт в SLI: две GeForce GTX 680 против трех GeForce GTX 660

Обзор GeForce GTX 650 Ti Boost: революция в среднем ценовом диапазоне

ASUS ROG Ares II: сравнение четырёх двухпроцессорных видеокарт

Тесты GeForce GTX Titan в профессиональных приложениях

Radeon HD 7990: тесты флагманской видеокарты AMD

Обзор видеокарты NVIDIA GeForce GTX 780: младший брат GTX Titan

Radeon HD 7990 в CrossFire: тесты уровня шума и температуры

GeForce GTX 770: видеокарта, бросающая вызов Radeon HD 7970?

Обзор GeForce GTX 760: возможности GK104 за $300

Обзор AMD Radeon HD 7730: предвестник APU Kaveri?

Лучшая видеокарта для игр: текущий анализ рынка

Сможет ли регуляция кадров в драйвере Catalyst 13.8 изменить ситуацию?

Radeon HD 7990 против GeForce GTX 690: определяем победителя

История о том, как появились GeForce GTX 690 и Titan

Radeon R9 280X, R9 270X и R7 260X: старые GPU, новые названия. Часть 1

Radeon R9 280X, R9 270X и R7 260X: старые GPU, новые названия. Часть 2

Подробный обзор Radeon R9 290X: возвращение AMD в сегмент Ultra-High-End. Часть 1

Подробный обзор Radeon R9 290X: возвращение AMD в сегмент Ultra-High-End. Часть 2

Обзор Radeon R9 280X: тест и сравнение семи видеокарт

Обзор Radeon R9 290: высокая скорость за $400, но как насчёт стабильности?

Обзор GeForce GTX 780 Ti: полностью разблокированный GPU GK110

Причина "изменчивых" характеристик Radeon R9 290X/290 и её исправление

Обзор Radeon R9 270: смена Radeon HD 7800

Дорабатываем Radeon R9 290: используем кулер Arctic Accelero Xtreme III

Обзор технологии G-Sync: меняем правила игры

Как себя ведёт Radeon R9 290X в закрытом корпусе?

Обзор партнёрских видеокарт: одна Radeon R9 290 и три 290X

Обзор Radeon R7 240 и 250: игровые видеокарты до $100

Мобильные видеокарты: GeForce GTX 780M, 770M и 765M против Radeon HD 8970M

Asus Mars 760: два GPU в режиме SLI на одной видеокарте в ценовом диапазоне $650

Тест пяти материнских плат на чипсете Z87 стоимостью менее $220

Обзор и тестирование корпуса Cooler Master HAF XB

Intel Core i7-975 Extreme и i7-950: поднимаем планку производительности

Обзор Intel Core i7-4770K: тесты флагманского процессора на новой архитектуре Haswell

Предварительный обзор Windows 8.1

Battlefield 4: тест 16 видеокарт в бета-версии игры

Развенчиваем мифы о производительности видеокарт: часть первая

Rambler's Top100 Рейтинг@Mail.ru

ВИДЕОКАРТЫ

Развенчиваем мифы о производительности видеокарт: часть первая
Краткое содержание статьи: А вы знали, что Windows 8 может "съедать" до 25% видеопамяти? Что по мере нагревания видеокарта становится медленнее? Что на звуки ПК вы реагируете быстрее, чем на изображения? Что разгон вашей карты может не работать? Приготовьтесь удивляться!

Развенчиваем мифы о производительности видеокарт: часть первая


Редакция THG,  18 февраля 2014
Страница: Назад  1 2 3 Далее


Развенчиваем мифы о производительности видеокарт | Включать или не включать V-Sync – вот в чём вопрос

При оценке видеокарт первым параметром, который хочется сравнить, является быстродействие. Насколько самые современные и самые быстрые решения обгоняют предыдущие продукты? Всемирная сеть пестрит данными тестирований, проведёнными тысячами онлайн-ресурсов, которые пытаются ответить на этот вопрос.

Итак, давайте начнём с изучения быстродействия и факторов, которые стоит учесть, если вы действительно желаете узнать, насколько быстра конкретная видеокарта.

Миф: частота кадров – это индикатор уровня графической производительности

Начнём с фактора, который нашим читателям, скорее всего, уже известен, но многие по-прежнему имеют неправильное представление о нём. Здравый смысл подсказывает, что пригодной для игры считается частота кадров 30 FPS и выше. Некоторые люди считают, что и меньшие значения сойдут для нормального геймплея, другие настаивают, что даже 30 FPS – это слишком мало.

Однако в спорах не всегда очевидно, что FPS – это просто частота, за которой кроются некоторые сложные материи. Во-первых, в фильмах частота постоянная, а в играх она изменяется, и, как следствие, выражается средним значением. Колебания частоты являются побочным продуктом мощи видеокарты, требуемой для обработки сцены, и с изменением контента на экране изменяется частота кадров.

Всё просто: качество игрового опыта важнее, чем высокий показатель средней частоты кадров. Стабильность подачи кадров – ещё один крайне важный фактор. Представьте себе поездку по шоссе с постоянной скоростью 100 км/ч и ту же поездку со средней скоростью 100 км/ч, при которой много времени уходит на переключение передач и торможение. В назначенное место вы приедете в одно время, но вот впечатления от поездки будут сильно различаться.

Так что давайте на время отложим вопрос "Какой уровень производительности будет достаточным?" в сторону. Мы вернёмся к нему после того, как обсудим другие важные темы.

Представляем вертикальную синхронизацию (V-sync)

Мифы: Необязательно иметь частоту кадров выше 30 FPS, поскольку человеческий глаз не видит разницу. Значения выше 60 FPS на мониторе с частотой обновления 60 Гц необязательны, поскольку картинка уже отображается 60 раз в секунду. V-sync всегда нужно включать. V-sync всегда нужно выключать.

Развенчиваем мифы о производительности видеокарт

Как на самом деле отображаются визуализированные кадры? Почти все ЖК-мониторы работают таким образом, что изображение на экране обновляется фиксированное количество раз в секунду, как правило, 60. Хотя есть модели способные обновлять картинку на частоте 120 и 144 Гц. Данный механизм называется частота обновления и измеряется в герцах.

Развенчиваем мифы о производительности видеокарт

Расхождение между меняющейся частотой кадров видеокарты и фиксированной частотой обновления монитора может стать проблемой. Когда частота кадров выше частоты обновления, за одно сканирование могут отображаться несколько кадров, что приводит к артефакту под названием "разрыв экрана". На изображении выше цветные полосы подчёркивают отдельные кадры из видеокарты, которые по готовности вывелись на экран. Это может сильно раздражать, особенно в активных шутерах от первого лица.

На изображении ниже показан ещё один артефакт, часто появляющийся на экране, но трудно фиксируемый. Поскольку данный артефакт связан с работой дисплея, на скриншотах его не видно, а вот невооружённым глазом он хорошо заметен. Чтобы его поймать, нужна высокоскоростная видеокамера. Утилита FCAT, которую мы использовали для захвата кадра в Battlefield 4, показывает разрыв, но не эффект гоустинга.

Развенчиваем мифы о производительности видеокарт

Разрыв экрана очевиден на обоих изображениях из BioShock Infinite. Однако на панели Sharp с частотой обновления 60 Гц он проявляется гораздо явнее, чем на мониторе Asus с частотой обновления 120 Гц, поскольку частота обновления экрана VG236HE вдвое выше. Данный артефакт является самым явным свидетельством того, что в игре не включена вертикальная синхронизация, или V-sync.

Второй проблемой на изображении BioShock является эффект гоустинга, который хорошо заметен в нижней части левого изображения. Этот артефакт связан с задержкой вывода изображения на экран. Если коротко: отдельные пиксели недостаточно быстро меняют цвет, и так появляется данный тип послесвечения. Этот эффект в игре проявляется гораздо ярче, чем показано на изображении. Время отклика от серого к серому у панели Sharp слева составляет 8 мс, и при быстрых движениях изображение кажется размытым.

Вернёмся к разрывам. Вышеупомянутая вертикальная синхронизация – это довольно старое решение проблемы. Оно заключается в синхронизации частоты, на которой видеокарта подаёт кадры, с частотой обновления монитора. Поскольку несколько кадров одновременно больше не появляется, разрывов тоже не наблюдается. Но если на максимальных графических настройках вашей любимой игры частота кадров упадёт ниже 60 FPS (или ниже значения частоты обновления вашей панели), то эффективная частота кадров будет скакать между кратными значениями частоты обновления, как показано ниже. Это ещё один артефакт под названием притормаживание.

Развенчиваем мифы о производительности видеокарт

Один из старейших споров в интернете касается вертикальной синхронизации. Кто-то настаивает, что технологию всегда нужно включать, кто-то уверен, что её всегда нужно выключать, а кто-то выбирает настройки в зависимости от конкретной игры.

Так включать или не включать V-sync?

Предположим, вы принадлежите к большинству и используете обычный дисплей с частотой обновления 60 Гц:

  • Если вы играете в шутеры от первого лица и/или у вас наблюдаются проблемы с воспринимаемой задержкой ввода, и/или ваша система не может постоянно поддерживать минимум 60 FPS в игре, и/или вы тестируете видеокарту, то вертикальную синхронизацию нужно выключать.
  • Если ни один из вышеперечисленных факторов вас не касается, и вы наблюдаете заметные разрывы экрана, то вертикальную синхронизацию нужно включить.
  • Если вы не уверены, лучше оставить V-sync выключенной.
Если вы используете игровой дисплей с частотой обновления 120/144 Гц (если у вас есть один из таких дисплеев, вполне вероятно, что вы купили его как раз из-за высокой частоты обновления):
  • Включать вертикальную синхронизацию следует только в старых играх, в которых геймплей проходит на частоте кадров выше 120 FPS, и вы постоянно сталкиваетесь с разрывами экрана.

Обратите внимание, что в некоторых случаях эффект снижения частоты кадров из-за V-sync не проявляется. Такие приложения поддерживают тройную буферизацию, хотя данное решение не очень распространено. Также в некоторых играх (например, The Elder Scrolls V: Skyrim), V-sync активирована по умолчанию. Принудительное отключение посредством модификации некоторых файлов приводит к проблемам с игровым движком. В таких случаях лучше оставить вертикальную синхронизацию включённой.

G-Sync, FreeSync и будущее

В статье "Обзор технологии G-Sync: меняем правила игры" мы рассмотрели решение Nvidia для перечисленных проблем. AMD сделала слабую попытку ответить на вызов, представив технологию FreeSync в начале 2014 года, и, хотя на данный момент её положительный эффект проявляется только в игре на ноутбуках, стоит отдать должное AMD за открытый доступ к технологии. Обе технологии нивелируют компромиссы V-sync, позволяя дисплею работать на изменяемой частоте обновления.

Трудно сказать, какая технология выйдет вперёд, но, как мы уже отмечали в обзоре G-Sync, мы не любители проприетарных стандартов (и многие производители и разработчики с нами согласятся). Хотелось бы, чтобы Nvidia открыла G-Sync для остальной части сообщества, хотя исходя из нашего опыта, компания вряд ли так поступит.

Развенчиваем мифы о производительности видеокарт | Стоит ли беспокоиться о задержке ввода?

Миф: видеокарты влияют на задержку ввода

Предположим, что вас постоянно убивают в многопользовательских шутерах, прежде чем вы успеваете реагировать. Неужели ваши оппоненты действительно намного быстрее вас? Может они жульничают? А может причина в чём-то другом?

Хотя жульничество иногда встречается, вполне вероятно, сверхчеловеческая (на первый взгляд) реакция подкреплена технологически. Причём это не относится к видеокарте.

Чтобы показать происходящее в игре на экране, необходимо время. Также проходит какое-то время, пока вы среагируете. Кроме того, на регистрацию ввода с мыши и клавиатуры тоже необходимо время. Время, проходящее между моментом, когда вы отдаёте команду, и реальным действием на экране называется задержкой ввода, что немного некорректно. Таким образом, если в шутере от первого лица вы нажимаете клавишу "огонь", и оружие срабатывает через 0,1 секунды, задержка ввода составляет 100 миллисекунд.

Развенчиваем мифы о производительности видеокарт

Скорость реакции человека на происходящее различается. Согласно исследованиям, проведённым в США в 1986 году, среднестатистический боевой пилот истребителя F-14 реагирует на простые визуальные раздражители в течение 223 мс (средний показатель). Может, вам так не покажется, но человек быстрее реагирует на звук, чем на изображение. Время реакции на звуковые раздражители находилось в диапазоне 150 мс.

Если интересно, вы можете проверить свою реакцию в визуальном тесте, а затем в звуковом.

К счастью, даже на самых слабых компьютерах задержка ввода не будет превышать 200 мс. Поэтому наибольшее влияние на результаты игры имеет ваша собственная реакция.

Однако с ростом различий в задержке ввода их влияние на геймплей растёт. Представьте себе профессионального геймера, чью реакцию можно сравнить с реакцией лучших пилотов, то есть 150 мс. Задержка ввода на 50 мс означает, что человек будет реагировать на 30% медленнее (это четыре кадра на дисплее с частой обновления 60 Гц) своего оппонента. На профессиональном уровне это весьма заметная разница.

Для простых смертных (включая наших редакторов, показавших результат 200 мс в визуальном тесте) и для тех, кому больше нравится играть в Civilization V, а не в Counter Strike 1.6, всё немного иначе. Вполне вероятно, вы вообще можете игнорировать задержку ввода.

Вот некоторые факторы, которые могут ухудшить показатель задержки ввода при прочих равных условиях:

  • Игра на HDTV (особенно если отключён режим игры) или игра на ЖК-дисплее со средствами обработки видео, которые нельзя отключить. Упорядоченный список показателей задержек ввода различных дисплеев можно найти в базе данных DisplayLag.
  • Игра на ЖК-дисплеях, использующих панели IPS с более высоким временем отклика (обычно 5-7 мс G2G), вместо панелей TN+Film (1-2 мс GTG) или ЭЛТ-дисплеев (самые быстрые из доступных).
  • Игра на дисплеях с низкой частотой обновления. Новые игровые дисплеи поддерживают 120 или 144 Гц.
  • Игра при низкой частоте кадров (30 FPS – это один кадр каждые 33 мс; 144 FPS – один кадр каждые 7 мс).
  • Использование USB-мышки с низкой частотой опроса. Время цикла на частоте 125 Гц составляет около 6 мс, что в среднем даёт задержку ввода около 3 мс. В то же время, частота опроса игровой мыши может доходить до 1000 Гц, при этом задержка ввода в среднем составит 0,5 мс.
  • Использование клавиатуры низкого качества (как правило, задержка ввода клавиатуры составляет 16 мс, но в дешёвых моделях может быть и выше).
  • Активация V-sync, особенно в сочетании с тройной буферизацией (существует миф, что Direct3D не включает тройную буферизацию. На самом деле, Direct3D учитывает опцию нескольких фоновых буферов, но немногие игры её используют). Если вы технически подкованы, можете ознакомиться с рецензией Microsoft (англ.) по этому поводу.
  • Игра с высоким временем предварительной визуализации. По умолчанию очередь в Direct3D составляет три кадра или 48 мс при частоте 60 Гц. Это значение может увеличиваться до 20 кадров для большей "плавности" и понижаться до одного кадра для повышения отзывчивости за счёт повышения колебаний времени кадра и, в некоторых случаях, общей потери в показателях FPS. Нулевого параметра не существует. Ноль просто сбрасывает настройки на исходное значение, равное трём кадрам. Если вы технически подкованы, можете ознакомиться с рецензией Microsoft (англ.) по этому поводу.
  • Высокая задержка интернет-соединения. Хотя это не совсем относится к определению задержки ввода, оно всё же заметно на неё влияет.

Факторы, которые не влияют на задержку ввода:

  • Использование клавиатуры с разъёмом PS/2 или USB (смотрите дополнительную страницу в нашем обзоре "Five Mechanical-Switch Keyboards: Only The Best For Your Hands"(англ.)).
  • Использование проводного или беспроводного сетевого соединения (проверьте пинг вашего маршрутизатора, если не верите; пинг не должен превышать 1 мс).
  • Использование SLI или CrossFire. Более длинные очереди визуализации, необходимые для реализации этих технологий, компенсируются более высокой пропускной способностью.

Вывод: задержка ввода важна только для "быстрых" игр и действительно играет значимую роль на профессиональном уровне.

На задержку ввода влияют не только технология дисплея и видеокарта. Железо, настройки железа, дисплей, настройки дисплея и настройки приложения – всё это вносит свою лепту в данный показатель.

Развенчиваем мифы о производительности видеокарт | Мифы о видеопамяти

Видеопамять отвечает за разрешение и настройки качества, но не увеличивает скорость

Производители часто используют видеопамять в качестве маркетингового инструмента. Поскольку геймеров убедили, что больше – значит лучше, мы часто видим видеокарты начального уровня, объём оперативной памяти у которых значительно больше, чем нужно на самом деле. Но энтузиасты знают, что самое важное – это баланс, причём во всех комплектующих ПК.

В широком смысле видеопамять относится к дискретному GPU и задачам, которые он обрабатывает, независимо от системной памяти, установленной в материнскую плату. На видеокартах используются несколько технологий оперативной памяти, самые популярные из которых – это DDR3 и GDDR5 SDRAM.

Миф: видеокарты с 2 Гбайт памяти быстрее моделей с 1 Гбайт

Не удивительно, что производители оснащают недорогие графические ускорители большим объёмом памяти (и получают более высокую прибыль), поскольку многие люди верят, что больший объём памяти прибавит скорости. Давайте разберёмся в этом вопросе. Объём видеопамяти видеокарты не влияет на её быстродействие, если вы не выбираете игровые настройки, которые используют весь доступный объём памяти.

Но для чего тогда нужна дополнительная видеопамять? Чтобы ответить на этот вопрос, необходимо выяснить для чего она используется. Список упрощённый, но полезный:

  • Прорисовка текстур.
  • Поддержка буфера кадров.
  • Поддержка буфера глубины ("Z Buffer").
  • Поддержка других ресурсов, которые требуются для визуализации кадра (карты теней и др.).

Конечно, размер текстур, которые загружаются в память, зависит от игры и настроек детализации. Например, пакет текстур высокого разрешения в Skyrim включает 3 Гбайт текстур. Большинство игр динамически загружают и выгружают текстуры при необходимости, однако не все текстуры должны находиться в видеопамяти. А вот текстуры, которые должны визуализироваться в конкретной сцене, должны быть в памяти.

Фрейм-буфер используется для хранения изображения в том виде, в котором оно визуализируется перед тем или во время того, как отправляется на экран. Таким образом, необходимый объём видеопамяти зависит от выходного разрешения (изображение в разрешении 1920x1080 пикселей по 32 бита на пиксель "весит" около 8,3 Мбайт, а 4K-изображение в разрешении 3840x2160 пикселей по 32 бита на пиксель – уже около 33,2 Мбайт) и количества буферов (минимум два, реже три и больше).

Особые режимы сглаживания (FSAA, MSAA, CSAA, CFAA, но не FXAA или MLAA) эффективно повышают количество пикселей, которые должны быть визуализированы, и пропорционально увеличивают общий объём требуемой видеопамяти. Сглаживание на базе рендеринга оказывает особенно больше влияние на потребление памяти, которое возрастает с ростом размера выборки (2x, 4x, 8x и т.д.). Дополнительные буферы также занимают видеопамять.

Таким образом, видеокарта с большим объёмом графической памяти позволяет:

  1. Играть на более высоких разрешениях.
  2. Играть на более высоких параметрах качества текстур.
  3. Играть при более высоких уровнях сглаживания.

Теперь разрушаем миф.

Миф: вам нужно 1, 2, 3, 4 или 6 Гбайт видеопамяти для игр на (вставьте родное разрешение вашего дисплея).

Самый важный фактор, который нужно учесть при выборе объёма оперативной памяти, - это разрешение, на котором вы будете играть. Естественно, более высокое разрешение требует больше памяти. Вторым важным фактором является использование упомянутых выше технологий сглаживания. Другие графические параметры имеют меньшее значение в отношении объёма требуемой памяти.

Прежде чем мы перейдём к самим измерениям, позвольте вас предупредить. Есть особый тип видеокарт класса high-end с двумя GPU (AMD Radeon HD 6990 и Radeon HD 7990, а также Nvidia GeForce GTX 590 и GeForce GTX 690), которые оснащаются определённым количеством памяти. Но в результате использования конфигурации из двух GPU данные, по сути, дублируются, разделяя эффективный объём памяти надвое. Например, GeForce GTX 690 с 4 Гбайт ведёт себя, как две карты по 2 Гбайт в SLI. Более того, когда вы добавляет вторую карту в конфигурацию CrossFire или SLI, видеопамять массива не удваивается. Каждая карта оставляет за собой только свой объём памяти.

Развенчиваем мифы о производительности видеокарт

Эти тесты мы проводили на Windows 7 x64 с отключённой темой Aero. Если вы используете Aero (или Windows 8/8.1, у которой Aero нет), то к показателям можно добавить около 300 Мбайт.

Развенчиваем мифы о производительности видеокарт

Как видно из последнего опроса на Steam, большинство геймеров (около половины) использует видеокарты с 1 Гбайт видеопамяти, около 20% имеют модели с 2 Гбайт, и небольшое количество пользователей (менее 2%) работают с графическими адаптерами, имеющими 3 Гбайт видеопамяти и более.

Развенчиваем мифы о производительности видеокарт

Мы протестировали Skyrim с официальным пакетом текстур высокого качества. Как видите, 1 Гбайт памяти едва хватает, чтобы играть при разрешении 1080p без сглаживания или с использованием MLAA/FXAA. 2 Гбайт позволяют запускать игру на разрешении 1920x1080 точек с максимальной детализацией и на 2160p с пониженным уровнем сглаживания. Чтобы активировать максимальные настройки и сглаживание 8xMSAA, даже 2 Гбайт недостаточно.

Bethesda Creation Engine – уникальная составляющая данного пакета бенчмарков. Она не всегда ограничивается скоростью GPU, но зачастую упирается в возможности платформы. Но в этих тестах мы впервые увидели, как Skyrim на максимальных настройках достигает предела возможностей видеопамяти графического адаптера.

Также стоит отметить, что активация FXAA не потребляет дополнительную память. Поэтому есть неплохой компромисс, когда использование MSAA не возможно.
Страница: Назад  1 2 3 Далее


СОДЕРЖАНИЕ

Развенчиваем мифы о производительности видеокарт. Отзывы в Клубе экспертов THG [ 47 отзывов] Развенчиваем мифы о производительности видеокарт. Отзывы в Клубе экспертов THG [ 47 отзывов]


РЕКЛАМА
РЕКОМЕНДУЕМ ПРОЧЕСТЬ!

История мейнфреймов: от Harvard Mark I до System z10 EC
Верите вы или нет, но были времена, когда компьютеры занимали целые комнаты. Сегодня вы работаете за небольшим персональным компьютером, но когда-то о таком можно было только мечтать. Предлагаем окунуться в историю и познакомиться с самыми знаковыми мейнфреймами за последние десятилетия.

Пятнадцать процессоров Intel x86, вошедших в историю
Компания Intel выпустила за годы существования немало процессоров x86, начиная с эпохи расцвета ПК, но не все из них оставили незабываемый след в истории. В нашей первой статье цикла мы рассмотрим пятнадцать наиболее любопытных и памятных процессоров Intel, от 8086 до Core 2 Duo.

ССЫЛКИ
ставки на киберспорт . Betboom.ru
Реклама от YouDo
erid: LatgC5Xqt
Заказать Газель в Щелково на http://perevozki.youdo.com/cars/gazel/geo/shchelkovo/.