РЕКЛАМА
ИНФОРМАЦИЯ
ПОЛЕЗНЫЕ ССЫЛКИ
Технология формирования луча (beamforming): новые возможности WiFi

Обзор Apple iPad 2: не без недостатков

Беспроводные маршрутизаторы 802.11n: тест двенадцати моделей

Rambler's Top100 Рейтинг@Mail.ru

СЕТИ

Почему Wi-Fi плохо работает и как это исправить. Часть 1
Краткое содержание статьи: В этой статье редакторы THG расскажут вам о природе Wi-Fi, как это работает, какие внешние факторы могут влиять на качество и дальность сигнала, а также на производительность точек доступа.

Почему Wi-Fi плохо работает и как это исправить. Часть 1


Редакция THG,  5 сентября 2011
Назад
Вы читаете страницу 2 из 9
1 2 3 4 5 6 7 8 9
Далее


Источники помех

Сложным в этой проблеме с внутренними помехами каналов является тот факт, что поток трафика Wi-Fi никогда не бывает равномерным. Мы имеем дело с высокочастотными (RF) помехами, случайным образом вмешивающимися в маршрут пакетов, наносящими удар в любом месте, в любое время и длящимися разное время. Помехи могут возникать из-за целого ряда различных источников, начиная с космических лучей и заканчивая конкурирующими беспроводными сетями. Например, микроволновые печи и беспроводные телефоны являются довольно известными "обидчиками" в диапазоне 2,4 ГГц.

В качестве иллюстрации представьте, что играете с другом в машинки Hot Wheels, и каждая машина, которую вы толкнёте по полу к другу, изображает пакет данных. Помехи – это ваш младший брат, играющий в шарики с другом напротив вашей транспортной колонны. Возможно, шарик и не ударится о вашу машинку в какой-то заданный момент времени, но очевидно, что в неё так или иначе попадут. Когда столкновение произойдёт, вам придётся прекратить игру, взять пострадавшую машинку и отнести её на линию старта, попытавшись снова запустить её. И, как и все сорванцы, ваш маленький братишка не всегда играет только в шарики. Иногда он бросает в вашу сторону надувной мяч для игр на пляже или плюшевую собаку.

Эффективная сеть Wi-Fi связана, прежде всего, с управлением беспроводного или радиочастотного диапазона — необходимо помочь пользователю как можно быстрее получить доступ к беспроводному "шоссе" и "покидать" его. Как вы заставляете свои машинки Hot Wheels ехать быстрее и направляете их точнее? Как делаете так, что всё больше и больше машин снуют туда-сюда, не обращая внимания на жалкие попытки младшего брата испортить вам настроение? В этом и заключается секрет поставщиков оборудования для беспроводных сетей.

Разница между трафиком и помехами Wi-Fi

Мы вернёмся к этому чуть позже, но прежде поймите, что стандарт 802.11 делает много такого, что позволяет регулировать управление пакетами. Вернёмся к автомобильным метафорам. Когда вы едете по дороге в автомобиле, то вы сталкиваетесь с правилами ограничения скорости передвижения и другими помехами, которые влияют на то, как именно ведёт себя ваша машина при определённых характеристиках. Но если на вашем месте окажется ваша прабабушка в своих очках с толстыми линзами, которая слушает Лоренса Уэлка (Lawrence Welk) и плетётся по федеральной восьмиполосной автостраде со скоростью 35 миль в час, то другие водители скоро потеряют терпение и начнут сигналить ей. Движение на дороге замедлится. Но все будут продолжать ехать, даже при такой сниженной скорости.

Это аналогично тому, что происходит, когда трафик Wi-Fi вашего соседа попадает в вашу беспроводную сеть. Поскольку весь трафик подчиняется стандарту 802.11, все пакеты управляются при помощи одних и тех же правил. Нежелательный трафик, встречающийся вам на пути, замедляет общее перемещение пакетов, но он не обладает тем же воздействием, как, например, излучение от микроволновой печи, которое не подчиняется правилам и просто проносится через различные полосы движения Wi-Fi (каналы), словно группа пешеходов-самоубийц.

Очевидно, относительное воздействие радиочастотного шума в устройствах Wi-Fi с границами диапазона частот 2,4 и 5,0 ГГц проявляет себя хуже, чем у конкурента – трафика WLAN (wireless LAN – беспроводная локальная сеть), но одна из целей при улучшении производительности идёт на пользу и той, и другой сети. Как мы увидим далее, для того, чтобы этого добиться, есть масса способов. А пока просто запомните, что все эти части трафика, конкурирующие между собой, и помехи, в конце концов, становятся фоновым шумом. Пакетированный поток данных, который начинает движение довольно мощно, при -30 дБ, в результате постепенно затихает, до -100 дБ и менее на некотором расстоянии. Такие уровни слишком низкие, чтобы быть чёткими для точки доступа, но они всё же могут нарушать трафик, также, как та старушка в очках с толстыми линзами.

На войне и в эфире все средства хороши

Давайте поговорим о том, как точки доступа (включая маршрутизаторы) управляют правилами передачи трафика. Вспомните обычный двухполосный въезд на скоростную автостраду. На каждой полосе выстраиваются в линию машины и на каждой из них есть светофор. Скажем, каждому потоку зелёный свет горит пять секунд.

Беспроводная сеть слегка изменила эту идею при помощи процесса, называемого эфирная равнодоступность. Точка доступа оценивает количество существующих клиентских устройств и устанавливает равные временные интервалы устойчивой связи для каждого устройства, как если бы камера, следящая за въездом на магистраль, смогла оценить количество машин, попавших в "пробку" и использовала бы эту информацию для того, чтобы решить, сколько должен гореть зелёный свет. До тех пор, пока свет остаётся зелёным, автомобили могут продолжать двигаться по въезду на магистраль. Когда свет переключится на красный, движение по данной полосе остановится, и тогда зелёный свет загорится для следующей полосы.

Предположим, на этой магистрали три полосы, по одной на каждый стандарт: 802.11b, 11g и 11n. Очевидно, что пакеты информации передаются с разными скоростями; это как если бы одна полоса была предназначена для передвижения на скоростных спортивных машинах, а другая – для медленных большегрузных трейлерах. За определённый интервал времени в своём трафике вы получите больше "быстрых" пакетов, чем медленных.

Без принципа эфирной равнодоступности трафик снижается до наименьшего общего знаменателя. Все транспортные средства выстраиваются на одной полосе в одну линию, и если быстрая машина (11n) оказывается в пробке за автомобилем со средними скоростями (11b), вся цепочка снижает скорость до скорости этого "среднего" авто. Вот почему, если вы довольно часто анализируете трафик при помощи потребительских маршрутизаторов и точек доступа, то приходите к выводу, что производительность может резко упасть, если вы подключаете старое устройство 11b к сети 11n; именно поэтому многие точки доступа имеют в наличии режим "только 11n". Такой подход, конечно же, заставляет точку доступа игнорировать более медленное устройство. К сожалению, большинство потребительских продуктов Wi-Fi пока ещё не поддерживают эфирную равнодоступность. Это свойство настолько быстро становится популярным в деловых кругах, что мы надеемся, что вскоре оно доберётся и до обычных пользователей.
Назад
Вы читаете страницу 2 из 9
1 2 3 4 5 6 7 8 9
Далее


СОДЕРЖАНИЕ

Почему Wi-Fi плохо работает и как это исправить. Отзывы в Клубе экспертов THG [ 10 отзывов] Почему Wi-Fi плохо работает и как это исправить. Отзывы в Клубе экспертов THG [ 10 отзывов]


РЕКЛАМА
РЕКОМЕНДУЕМ ПРОЧЕСТЬ!

История мейнфреймов: от Harvard Mark I до System z10 EC
Верите вы или нет, но были времена, когда компьютеры занимали целые комнаты. Сегодня вы работаете за небольшим персональным компьютером, но когда-то о таком можно было только мечтать. Предлагаем окунуться в историю и познакомиться с самыми знаковыми мейнфреймами за последние десятилетия.

Пятнадцать процессоров Intel x86, вошедших в историю
Компания Intel выпустила за годы существования немало процессоров x86, начиная с эпохи расцвета ПК, но не все из них оставили незабываемый след в истории. В нашей первой статье цикла мы рассмотрим пятнадцать наиболее любопытных и памятных процессоров Intel, от 8086 до Core 2 Duo.

ССЫЛКИ
Реклама от YouDo