"Где Валли?"* и Wi-Fi
Мы уже видели, что точка доступа может настраивать фазы сигналов для получения максимального уровня сигнала в заданной точку, но как AP узнаёт, где именно находится эта точка (то есть клиент)? Всенаправленная точка доступа, обнаруживающая устройство-клиент с сигналом -40 дБ, выглядит так же в положении на 4 часа, как и на 10. В случае с многолучевым разнесением, при котором у вас есть разные сигналы, исходящие с разных направлений, у AP нет способа сообщить вам, передаёт ли клиент сигнал с высокой мощностью издалека или с низкой – с недалёкого расстояния. Если клиент движется, точка доступа не может определить, в какую сторону повернуться, чтобы обнаружить его. Эффект очень похож на ситуацию, когда вы не можете определить, откуда доносится сирена, если стоите между несколькими высотными зданиями. Звук кажется вам слишком сильным, чтобы точно определить направление, откуда он исходит.
Это одна из неотъемлемых опасностей технологии формирования луча. Оптимизация луча от точки доступа, который должен попасть на заданное устройство-клиент, требует знания того, где именно последний находится, в математическом смысле, если не в пространственном. AP получает множество сигналов и должна в течение какого-то времени отследить один или два из них, которые ей нужны. При таком большом количестве похожих типов сигналов и внешних отвлекающих факторов (говоря языком радиосвязи), результатом для точки доступа может оказаться поиск одного символа на объявлении с рекламой "Где Валли?". От того, насколько быстро AP может установить местонахождение своего глупого клиента, в большой степени зависит то, каким образом сам клиент пытается сообщить о своём положении AP, если вообще пытается.
* Примечание: "Где Валли/Уолдо?" ("Where's Wally/Waldo?" – игра на внимание для компьютеров и мобильных телефонов. Задача игрока – найти спрятавшегося в толпе Валли.)
Неявные и явные
Возвращаясь к идее о том, каким образом слух может вас обмануть: обычно мы изолируем звуки, напрямую связанные с разницей во времени между тем, когда звук достиг одного уха, и тем, когда достиг другого. Вот почему мы теряемся, услышав звук, отражённый от здания, так как не можем определить, сколько требуется времени, чтобы волна достигла каждого уха. Наш мозг воспринимает разницу фаз сигналов источника как ненормальную.
При наличии у точки доступа множества антенн, они используются ею как уши, затем оценивают разницу фаз сигналов для фиксации в направлении клиента. Это называется неявное формирование луча. Сигнал формируется в том направлении, которое неявным образом выводится из обнаруженной фазы сигнала. Тем не менее, AP может оказаться в тупике из-за "странных" отражающихся сигналов, совсем как мозг. Эту путаницу можно дополнить разницей в направлениях восходящей и нисходящей линий.
При явном формировании луча клиент точно сообщает, что ему нужно, словно размещает заказ на чашку с замысловатым эспрессо. Клиент посылает запросы, связанные с фазами передачи и энергией, а также другими факторами, имеющими отношение к текущей обстановке в его окружении. Результаты являются намного более точными и эффективными, чем при неявном формировании луча. Так в чём же загвоздка? Ни один продукт не поддерживает явное формирование луча, по крайней мере, ни одно из современных устройств-клиентов. Как неявный, так и явный метод должны быть встроены в чипсет Wi-Fi. К счастью, образцы с поддержкой явного метода формирования луча вскоре должны появиться.
Поляризация
Помимо всех вопросов о беспроводной связи, с которыми мы столкнулись, можно добавить в список ещё и поляризацию. Поляризация значит намного больше, чем подозревают некоторые, и мы получили возможность увидеть своими глазами все эффекты на
Возможно, вы знаете, что свет распространяется волнами и у всех волн направленная ориентация. Вот почему поляризованные солнечные очки так хорошо действуют. Свет, отражённый от дороги или снега вам в глаза поляризуется в горизонтальном направлении, параллельно земле. Покрытие с поляризационными фильтрами в очках ориентировано на вертикальное направление. Представьте волну как большой, длинный кусок картона, который вы пытаетесь просунуть сквозь жалюзи. Если вы держите картон горизонтально, а шторки вертикальные, то картон не пройдёт в щели. Если же жалюзи горизонтальные, например, подъёмные, тогда картонке ничего не стоит беспрепятственно преодолеть препятствие. Солнечные очки сконструированы для того, чтобы отсекать слепящий свет, который, в большинстве своём, имеет горизонтальную направленность.
Но вернёмся к Wi-Fi. Когда с антенны посылается сигнал, он несёт ориентацию поляризации этой же антенны. И потому, если точка доступа находится на столе, а испускающая сигнал антенна указывает точно вверх, излучённая волна будет иметь вертикальную направленность. Следовательно, принимающая антенна, если она хочет иметь наилучшую возможную восприимчивость, также должна иметь вертикальную направленность. Верным является и обратное утверждение — принимающая AP должна располагать антенной (антеннами), которые подстроены по поляризации к посылающему клиенту. Чем дальше от настройки по поляризации находятся антенны, тем хуже приём сигнала. Хорошие новости заключаются в том, что большинство маршрутизаторов и точек доступа оснащены подвижными антеннами, которые позволяют пользователям найти наилучшее положение для получения сигнала с клиента, совсем как при использовании антенны с "рожками" для телевизоров. Плохая новость: из-за того, что очень мало людей понимает принципы применения поляризации в устройствах Wi-Fi, вряд ли кто-то выполняет эту оптимизацию поляризации.
Глядя на приведённую выше иллюстрацию, вспомнив всё, о чём мы вам рассказали, вы увидите, что точка доступа испускает как горизонтальные (вверху), так и вертикальные сигнальные волны на клиент